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ABSTRACT

The objective of this work is to present a general non-

linear mathematical model describing the global behavior of

a compliant riser idealized as a slender, non-rotationally

uniform rod with bending, extensional and torsional degrees

of freedom. This model inc1udes the effects of external and

internal pressure and speed of the internal fluid on the

system.
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NONENCLATURE

absolute acceleration of C,a=[a~,a~,a"j U"

total inner and outer cross-sectional area of riser

tubes; total outer cross-sectional area of riser

tubes and buoyancy modules

unit vector in binormal direction

buoyancy per unit length of buoyancy modules in water

A.,A;Ab

Bb
p QA for y<h and zero otherwise

mean internal fluid speed; for our application p.c «p
2

rotation matrix, see equation  II.14!; or centroid of a

cross-section

maximum dimension of a cross-section

strain

Young's modulus

extensional rigidity

bending rigidity of a cross-section around 5; cross-product
EA

EI EI

cross-product of bending rigidity around x and y

maximum and minimum bending rigidities of a cross-sectionEI<< EI'in

�r.n cross-product of bending rigidity around g and q

effective rigidities EI~~-c J~~;EI~"-c J"-~2 2
i iEI~~ EI""

e ' e

orientation angle, see Figure B. 1

of bending rigidity around n and 8

EI,EI,EI bending rigidities of a cross-section around x, y and the



NOMENCEATURE  continued!

internal forces, 7'=[T',t|~,Q"] U"; for F see equation  II.92!

external hydrodynamic force per unit length  excluding

gravity effects!; FH"-[FH,FH,FH]-U"

force per unit length due to internal flow  excluding

gravity effects!

acceleration of gravity

torsional and effective torsional rigidity, GI c JP 2

internal fluid and salt water elevations above the axes

origin

HRC+Hi C

angular momentum per unit length about C of internal fluid;

riser materials and buoyancy modules

mass inertia per unit length tensor of riser material and

buoyancy modules: J =diag[JR,JR~~,JR"]; and internal fluid
J,=diag[J~~,J~~,J";"], where diag[.] stands for diagonal
matrix

direction cosines of b with respect to C~g

unstretched riser length, buoyancy module length

 WR+Wb!/9, WR+W +Wb!/9

restoring moment [N ,N~,M"] U"

external hydrodynamic moment per unit length

moment per unit length due to internal fluid flow

bending moment projections along n and b

torsional and bending moments around g and q





NOMENCLATURE  continued!

V.

M

Mb,W ~ ,WR

x,y,z

1 2 3
X ,X ,X

"C VC
1

Er%Eetcz

8

pi'pw

or. ae' oz

absolute velocity of C,v=[v ,v ,v ].U'

constant volume flow rate of the internal fluid

effective weight per unit length, M=MR+M.+Mb-Bb-8*

average effective weight per unit 'length in water

buoyancy module material, internal fluid and riser

material weights per unit length

coordinates of C in the inertial frame

coordinates, see equation B.2

coordinates of C

direction cosines of t with respect to U

direction cosines of n with respect to U

direction cosines of b with respect to U

structural damping force per unit length

strains in radial, circumferential and axial directions

structural damping moment per unit length

curvature of the centerline

Poisson's ratio

kinematic viscosity of the internal fluid

internal fluid and sa'1t water densities

stresses in radial, circumferential and axial directions

geometric torsion

Euler angles, see Figure II.1

Euler angles of internal fluid element



NOMENCLATURE  continued!

orientation angle, see Figure A.l

vector of the angle of infinitesimal rotation of the

system Cygne

absolute angular velocity of Cygne frame, u=[w ,~ ,<P].U',
and of internal fluid element ~ =[~ ' ,~ ' ,<a '"] U"

vector rate of rotation of C~g frame along the rod,

b[n n n'] U"
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CHAPTER I

INTRODUCTION AND OUTLINE

Compliant risers are assemblages of pipes with very small overall

bending rigidity used to convey oil from the ocean floor or a subsur-

face buoy to a surface platform, see Figures I.l to I.4. A compliant

riser is permitted to acquire large static deformations because of its

small bending rigidity and readjusts its configuration in response to

large motions of the supporting platforms, to which it is rigidly con-

nected, without excessive stressing. Compliant risers have been used

successfully in protected waters in buoy loading stations for tankers.

Extension of shallow water concepts to deepwater have been proposed by

the industry [1 to 8] as alternatives to conventional production risers

because they simplify the overall production system.

The purpose of this work is to provide a general non-linear mathe-

matical model describing the global behavior of a compliant riser idealized

as a slender non-rotationally uniform rod with bending, extensional and

torsiona1 degrees of freedom in three dimensions and which includes the

effects of external and internal pressure and speed of the internal fluid on

the system.

This work is organized as follows: Chapter II includes the development

of the mathematical model, including

� model assumptions
� equilibrium equations
- constitutive relations
- the relations between the rate of rotation of the body system

along the length, the Cartesian coordinates, acceleration,
velocity and angular velocity of the riser with the Euler angles
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� geometric compatibility relations
- the relations between the rate of rotation of the body system

along the length with the angular velocity
� the relations between the time rate of change of the angular

momentum per unit length with the angular velocities and
accelerations

- estimation of the force and moment per unit length due to the
internal flow

- analysis of the equilibrium equations in the local principal
directions

- reduction of the governing equations to a first order system
of partial differential equations

� boundary and initial conditions
- specialization of the qeneral governing equations for planar

response without torsion

Appendix A provides the definitions of the structural rigidities of a

cross-section. Appendix B provides derivation af the constitutive rela-

tions in the local tangential, normal and binormal system to the center-

line. Appendix C provides derivation of the constitutive relation between

effective tension and extensional strain of the centerline.
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Fi gure I. 3. Catenary Compliant Riser, adapted from [6]

Figure I.4. Buoyant Compliant Riser, adapted from I 7]



CHAPTER II

DEVELOPMENT OF THE MATHEMATICAL MODEL

II.1 MODEL ASSUMPTIONS

A mathematical model for the static behavior of slender elastic rods

undergoing large deformations with small strains is given in Love [gj and

Landau and Lifshitz L103. The modification to account for dynamic effects

and the presence of a heavy fluid inside and outside the tube modelled as

a s!ender rod can be found in Nordgren [11] and Patrikalakis [12].

Methods for the computation of the motion of elastic rods with equal

principal stiffnesses and with torque applied at the ends can be found in

Nordgren [13,11] and without torque in Garrett [14j.

In this work we extend the mathematical model derived in Nordgren [ll]

and Patrikalakis [12] to allow the computation of the motion of an

assemblage of tubes modelled as a non-rotationally uniform slender elastic

rod with space varying torque. The model derived here also accounts for the

effects of steady internal flow in the non-linear regime. A related model

allowing study of the effects of steady internal flow on the linear dynamics

of planar naturally curved tubes can be found in Hill and Davis [15].

The basic assumptions of our model are listed below:

The compliant riser is model 'led as a ~sin le non-rotational ly oniiorm

rod rather than as an assemblage of interacting rods or shells. We

make this idealization in order to reduce the degrees of freedom and

currently available information on the structural characteristics



of such structures. It is noted that for some compliant riser con-

figurations, such as the one proposed by Panicker and Yancey [6j,

the equations of the individual members composing the riser and the

interactions between members need to be analyzed. Certain phenomena,

for example, such as whirling instabilities of linear riser arrays,

Blevins [16j and Ottesen Hansen and Panicker [17j, necessitate this

level of more detailed analysis.

2. The materials employed in the construction of different layers of

compliant risers are assumed to be homogeneous, isotropic and

linearly elastic.

3. Strains are assumed to remain uniformly smal'] although deformati ons

may become large.

4. Shearing deformations are neglected [9 to 15j. This is justified be-

cause they are of order  Dn/L! compared to rotations of riser cross2

sections after bending, where D,L are the diameter and the length of

the riser and n the order of the excited flexural mode. For typical

configurations 0/L«1 and n is small; i.e., low frequencies are excited.

This assumption implies that plane cross sections remain plane after

bending and normal to the neutral axis as in the Rayleigh slender beam

theory, see Crandall, et al. [18j.

5. Thermal effects are neglected.

Assumption 1 implies strain continuity across layers of different

materials in a given assemblage of tubes.



This idealization together with assumptions 2 to 5 allows the computation

of equivalent bending, extensional and torsional rigidities of a particular

cross section of the compl i ant ri ser, as i t i s shown in Appendi x A. Two

values of the bending rigidity, EI ~ and Eln" are required for each cross

section, where 6 and q are the centroidal principal axes of the cross section

around which the bending rigidity is maximum and minimum, respectively.

The term centroid, C, of a cross section denotes the moment centroid of the

cross section with weighing factor the Young's modulus of the materials

participating in bending, see Crandall, et al. [19j. In this work we also

assume that

6. The centroid, C, defined above is also the mass centroid of the cross

section.

7. The axes q, C and Ti are principal axes of the mass inertia of the cross

section, where q is orthogonal to   and q at the centroid C.

Further theoretical and experimental research might be necessary to

quantify the errors implied by the above list of assumptions, particularly

assumptions 1 to 5.

I I. 2 EQUILIBRIUM EQUATIONS

Me define a basic right-handed orthogonal Cartesian inertial reference

frame Oxyz with correspondi ng unit vectors i j and k, such that g is directed

vertically upwards, and an orthogonal right-handed body system C~g at each

cross section of the rod. Point 0 can be chosen as any point fixed with

respect to the earth, For convenience, however, we choose 0 to coincide

with the centroid, C , of the lowest end cross section of the rod if C is
o
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fixed with respect to the earth or with its mean position if it is

allowed to move. The unit vector < is tangential to the centerline

of the riser. The centerline is defined as the continuous line that

joins all points C in the different cross sections of the rod. Each

cross secti on can be ~dentif~ed by the unstr etched arc length of the

centerline measured from C . The vector g points in the direction of
0

increasing arc lengths. The directions of g and ii are chosen in the

F' -W +F +F.+~=ma
H i

-+ ~ -+ -+
M + RxF' + MH + M. + 8 = dHR C/dts H i R,C

 II.2!

where F' = [T', Q , Q 3 ~ "

= P + p A - p'.A ~
0 0 1 i

previous section and point in such a way so that q p are a right-handed

system. This system of axes is called the principal torsion-flexure

system of axes of the rod at each point C of the centerline, Love [9].

The equations of equilibrium of forces and moments acting on a

differential element ds of a compliant riser with centroid C are:



 Ir.6!p = p�g h�-y!

 II.7!p'. = p.g h -y!

 lI.8!W = W + W. + W � Bb-B*
R i b

m =  WR+Wb!/g  rr.g!

is the external hydrodynamic force per unit length excluding

the effects of static pressure due to gravity.

is the internal hydrodynamic force per unit length excluding

the effects of static pressure due to gravity.

restoring moment, M 7+M g+H q

MH

M.

E and 5

"R,C

is the external moment per unit length

is the moment per unit length due to the internal f'luid flow

are structural damping force and moment per unit length

absolute acceleration of C

is the angular momentum per unit length of the riser material

and buoyancy modules with respect to C



tension in the riser material

shear forces in the g and n direction

static water and internal fluid pressures due to gravity

at elevation y s!

salt water and inner fluid density

acceleration of gravity

salt water and internal fluid heights above C
0

Riser material, internal fluid and buoyancy module weights

per unit length

Buoyancy per unit length due to buoyancy modules

Weight per unit length of displaced salt water by riser tubes

Total outer and inner cross sectiona'j areas of the riser.

A. is assumed to be constant with s.
1

Q Q"

Po~pi

pw'p i

h�,h

WR,W.,Wb

Bb

A ,A.

Subscript s denotes partial derivative with respect to s, the un-

stretched arc length of the centerline. d/dt denotes partial derivative

with respect to time for a  vector! quantity expressed in the inertial

frame. Equations �! and �! are valid within small strain theory

e=s+-1, where s* s! is the stretched arc length of the centerline, see

assumption 3 and Love [9].

I I. 3 ANALYSIS OF DEFORMATION-CONSTITUTIVE RELATIONS

It is convenient to analyze the governing equations �! and �! in

the centroidal principal axes Cg, C< and Cn, because the compliant riser is

not rotationally uniform and because bending and torsion effects are included
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in our matheiiiatical model. It is noted that the equations of con-

ventional marine risers, Patrikalakis [l2], Bernitsas [20,2l] and

cables, Triantafyllou [22], Triantafyllou and Bliek [Z3], Bliek [Z4]

and Triantafyllou, et al. [25] have been analyzed in the local

tangential, X=t� normal, n, and binormal, b, directions to the center-

line. The system t,rT,f is convenient in the case of conventional

risers, because the bending moment is directed exclusively in the bi-

normal direction due to the rotational uniformity of the cross section,

Love [9]. In the case of cables where bending effects are usually

neglected and structural torsion is uncoupled from the other modes of

deformation, it is sufficient to examine the deformations of the center-

line, which can in turn be conveniently expressed in terms of the 7,n,b

system. The interesting relat1on between an analysis in the C~g and

CPnb systems for a non-rotationally uniform slender rod is presented in

Appendix B.

To describe flexural, extensional and torsional deformations of the

rod, it is convenient to div1de the rod into i nfi nites1mal elements of

stretched arc length ds*, each of which is bounded by two adjacent cross

sections. To each cross section we attach a local body system Cr<q de-

fined 1n the prev1ous section. It is assumed that if the centerline of

the rod is recti linear and no torsion is appl1ed, all systems, C~9, are

mutually parallel for all C along the rod. At any fixed time t, any two

adjacent systems C~< ii are rotated through an infinitesimal relative angle.

It is known that an infinitesimal angle of rotation can be regarded as a

vector parallel to the axis of rotation, Crandall, et al. [18]. Let dk
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be the vector of the angle of infinitesimal rotation of a system C~g

at s"+ds* relative to the system at s* at a fixed time t. The com-

ponents of d$ are the angles of rotation about each of the coordinate

axes qg,ii. To describe the deformation we need to define the vector

rate of rotation of the coordinate axes system CqFq along the rod,

Love t9j, Landau and Lifshitz [10].

where subscript s* denotes partial derivative with respect to the

stretched arc length s". In all subsequent analysis, differentiations

with respect to s*, to determine components of 5, will be replaced by

differentiation with respect to the unstretched arc length s of the

centerline, because the extensional strain of the centerline is assumed

small, e«], see assumption 3. 4 discussion of this approximation can

be found in Lave [9j. Therefore, consistent with equations �! and �!

and our subsequent analysis, we will use

 Ir.lo!

For the choice of axes g,  and ti adopted in the previous section, the

following constitutive relations between the restoring moment N and Q are

valid as a result of the basic assumptions 1 to 5:

V~ = GIPn~,v~ = EI~~a~, Vn = EIn~a~   I I. 1 1 !

where GI, EI and EI"" are the torsional and principal bending rigiditiesP

of the cross section. Estimates of these rigidities can be obtained with



the method outlined in Appendix A. The constitutive relation for M and

M~ are based on the basic approximation of slender rod theory, Love [9j,

according to which the extensional strain due to bending parallel q at an

arbitrary material point of the cross section with coordinates g and q,

is given by 2 q-A  . Equations  A.5! and the above expression for the

extensional strain due to 0 and Q imply that this extensional strain

does not produce a net force along <. An extensive discussion of the

vali di ty of   II. 11 ! can be found in Love [9], pp. 3B9-395-

It is appropriate at this point to summarize the results of Appendix 8

concerning the analysis of bending moment, M !+M n on the local normal and
binormal vectors to the centerline for a non-rotationally uniform rod. The

bending moment projections along b and n are given by

M=EI K,M=-EI K
bb  II.12!

where EI is the bending rigidity of the cross section about b, EI isbb -+ nb

the cross product of bending rigidity about n and b and K the curvature

of the centerline, Eisenhart [265. Equation  II,12! implies, as stated

earlier, that in rotationally uniform rods, where EI =0, the bendingnb

 II.13!

-+ nmoment is exclusively directed in the b direction; i.e. M =0. This fact is,

for example, used in the derivations of Nordgren [13], Garrett [14],
Patrikalakis [12] and Kim [27].

In order to complete the governing equations, we need to derive the

constitutive relation between effective tension T and extensional strain, e,

of the centerline. This is done in Appendix C, where it is shown that

under a number of realistic assumptions
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Figure l?.1. Eu1er ang'les definition
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c23 = cos6 sing

 II. l 5.7!c3l = sine cosy cosy + sing sing

c3> = sinB cosQ sing - sing cosp

 II.l5.9!c3> = cose cosg

We are now in a position to relate the components of 5 with !,8,s' s'

and the Euler angles $,6 and g. These relations can be obtained

by noting that

 II.l6!= g k+4�+40

 II.l7! > = [-sing, cos4, 0].U

where g2 is defined in Figure II.l, and using equation  II.l0! and  II.l4!.
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The following results are derived by projecting  II.16! on gg and q

respectively:

 II.la!SlAB
s 5

 I I.19!g< = B cosy + y cosB sing
s s

  II. 20!sing + 4 cosB cos4
s s

Let

 II.21!R = Lx,y,z] U

be the position vector of an arbitrary point C on the riser centerline.

The tangential vector, g, to the centerline can be found by

 II.22!
r,=R~

s

where s" s,t! is the stretched arc length corresponding to point C with

Lagrangian coordinate, s, Eisenhart L26]. Using

{II.Z3!e=s*-1
s

we find that

t; = R /�+e!
s

 II.24!

which by using  II.15.1! -  II.15.3! leads to

II.5 RELATIONS BETWEEN THE CARTESIAN COORDINATES OF C AND THE EULER ANGLES
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x =  l+e! cose cos4
s

 I I. 25!

 II.26!y =  l+e! cose sink

z = - l+e! sine
s

 I I. 27!

II.6 RELATIONS BETWEEN ACCELERATION, VELOCITY AND ANGULAR VELOCITY
AND EULER ANGLES

The absolute acceleration a of point C can, of course, be

evaluated as

 II.28!

 II.29!

and, therefore, following Crandall, et al. [l8j, we obtain

0] Ul I + ~[v v v ] U  II.30!

Alternatively, we may calculate a by using the components of the

absolute velocity, v, of C and angular velocity, ~, of the C~F system
in the local «, ,o directions. This formulation allows an easier

evaluation of the angular momentum  assumption 7! and of the external

force and moment terms for a non-rotationally uniform rod. The

simplification of the external force and moment, terms is based on the

further assumption that the «g,n directions are also principal directions

for the added mass/inertia tensor, see Newman [30j.

We, therefore, let the absolute velocity of C be analyzed as
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Projecting  !I.36! on the local F�g,q directions and using  II.17! and

 II.14!, we obtain:

~=gt- gtsinB  II.37!

= Bt cos4 + 4tcos9sinQ  II.38!

 II.3g!= -e sing + 0tcosecosy

Note the similarity of  II.37! to  II.39! to  II.18! to  II.20!, respec-

ti vely.

II.7 GEOMETRIC COMPATIBILITY RELATIONS

These are relations connecting the space derivatives of the q.F.,q

components of v, the components of G,~ and the extensional strain, e,

leads to

of the centerline. These relations are easily obtained by rewriting   II.24!

as 4 =�+e!Y, taking a time partial derivative, substituting Rt by v and
s

using the fact that rt=~xY, see Crandall, et al. L18]. This procedure
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However, using  II.Z9! and the relations

ts = BxC. <s = Axe, q, = 5xl  II.41!

we can also write that

] U'' + 6x[v~,v~,v"] U''  Ir.42!

Relations  II.41! can be found in component form in Love [9]. They

can be easily proved by noting that for a fixed time t, the changes of

vectors q,  and q between two adjacent cross sections of the centerline

can be written as

dq = dexT;, dg = dFxt, dq = dfxn  II.43!

 II.44!

in  II.42! and eliminating v between  II.40! and  II.42!, we obtain the

compatibility relations in component form in the z,  and rj directions.

where df is the vector of angle of infinitesimal rotation of the ~g

system at s+ds relative to the system ~g at s, see Landau and Lifshitz [10].

Dividing   II.43! by ds and using  II.10!, relations   II.41! are obtained.

Introducing



' + n'y' � n'v = ey v
 II.45!

y + Q"y - Q y = �+e!u!
5

 II.46!

y~ + n~v~ � dv~ = -�+e!v~
s

 II.47!

Triantafyl lou, et al. [25].

II.8 RELATION BETWEEN 2 AND u!

First we combine relations  II.18! to   II.20! to obtain:

= {0 sing + 0 cosg!/cos9  II.48!

A~cosQ 0 s~n4  II.<S!

+ $ sinB
s s

 II.5Oa!

Relations similar to {II.45! to {II.47! in the local 7,n and b direc-

tions of the centerline of a cable can be found in Bliek [24j and
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Due to  II.48! relation  II.50a! can be also rewritten as

+ tan9 A sing + 0 cosg!  II.50b!

In a similar manner relations  II.37! to  II.39! can be combined to

give:

=  ~ sing + ~"cosQ!/cos9  II.51!

9 = ~ cosQ � ~ sin>
t

 II.52!

t ~ + gtsin9  II.53a!

Due to  II.SI!, relation  II.53a! can be also rewritten as

+ tan9 ~ sing + ~ cosQ!
t

 II.53b!

Relations  II.48!,  II.50b!,  II.51! and  II.53b! provide an explicit

indication that 9 = + iT/2 is a singular point of the tt,9,$ set of Euler

axes used in this work as stated in Section II.4. However, for the

reasons given in the above Section, 9 will be substantially different

from + it/2 for all configurations studied here.
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The relations between 0 and ~ can be obtained by taking the partial

derivative with respect to time of equations   II.18! to   II.20! and

using   II.48! to   II.53! to eliminate the partial derivatives of the

Euler angles with respect to s and t. This procedure leads to:

t s
 II.54!

n~ = g~ + Q u!
t s

 II.55!

+AU!-Q d
s

 II.56!

of each differential riser element in the local q,g and rl directions

which, due to assumption 7, are also principal axes of the mass inertia

of the element:

HR,C ~ R,C HR,C'"R,C~ "  II.5>!

II.9 EYALUATION OF dHR C/dt

We analyze the vector, HR C, the angular momentum of the riser

material per unit length with respect to the center of mass and centroid
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where

R,C R
 II.58!

R,C R
 II.59!

R,C R
 II.60!

dH /dt = [H

and therefore analyzing in the r�E and q directions we obtain:

ddt = >" ' +  ~"-~»»!» '
R,C R t R R

 II.62!

dH» /dt = <'»»+  <"-<'"! "~'
R,C R t R R

 I I. 63!

gav�n
R,C R t R R

 II.ee!

see Crandall, et a1. I18]. As with equation  I1.30!, we obtain:
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II.10 ESTIMATION OF THE FORCE F. PER UNIT LENGTH DUE TO INTERNAL FLOW

Let R. be the position vector of the center of mass of a
1

differential internal fluid element defined as an infinitesimal cylinder

of cross sectional area Ai assumed constant with s, and height 6s. We
further assume that the line of the centers of mass of all such fluid

elements coincides with the centerline of the riser and that W,- is con-

stant with s. For each internal fluid element, we introduce a Lagrangian

coordinate s which is equal to the position s=s of the fluid element
0 0

at some fixed time t, see Crandall, et al. [18]. Fluid elements possess

a mean flow velocity, c, where c=Y;/A. and V. is the constant volume flow
rate of the internal fluid. At some time t, the position, s, of the f1uid

element is given by;

 I[.65!s=s +c tt!
0 0

This relation is va'lid for small extensional strains of riser centerline,

e«l, and is, therefore, compatible with the degree of approximation

implied by assumption 3.

From compatibility of the internal fluid flow and the riser motion,

we obtain

R. s ,t! = R s,t!
 I I. 66!

where s is given by   II.65! and R s,t! is the position vector of the riser
centerline with respect to the inertial system. The compatibility relation
 II.16! is also implied in the derivation of Hill and Davis [l5], although
they later restrict their attention to the linearized equations of motion.
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Equilibrium of forces for an internal fluid element leads to:

o A-R  s,t! = -F.  s,t! - A.  pq!i 1 itt 0 1 ' 1 s  !I.67!

where subscript t denotes derivative with respect to time. The left-

hand side of equation �7! is the time rate of change of momentum per

unit length of the internal fluid element in the inertial system. The

term -F,. s,t! is force per unit length from the riser inner walls on

64/Re,. if Re,. < 2300
p = � � � c

s D, 2
1

if Re- > 2300

where Re = cD-/v;, and X depends upon Re; and roughness, Schlichting L32].
i 1

The va'tue of A is always approximately below 0.08, Typical values indicate

that p L/p«l. Equation  II.67! allows the computation of F in terms of

the gross internal flow parameters p ., A., c and p and R s,t! if the com-1' i

patibility relation  II,66! is employed to calculate R.  s,t!. Following

Crandall, et al. [18] we find from  II.66! that

the fluid element which includes normal pressure and frictional com-

ponents. The term -A. p7! is the contribution of the overpressure, p,
s

on the two end cross sections of the differential element. The contri-

bution of gravity forces to the pressure and the overall equilibrium of

forces is properly taken into account in equation  l! due to the definition

of effective weight W and T'. Therefore, p, is indeed an overpressure

resulting from the pressure of the well. The value of p varies little

with s for the speeds and the geometries of interest in compliant risers.

For a cylindrical tube



R. = R + cR
it t 5

 II.68!

2~
R. = R + 2cR + c R

tt st ss
 II.69!

In addition we may use the relation

 II.7O!

valid for small extensional strains, e«l, see assumption 3;

+ + +
exp

and
a = R  Ir.72!

where u is the absolute angular velocity of C~gri, to obtain:

R. = a+ 2c~xg+ c g
tt

s
 II.73!

Relations  II.73! and  II.67! imply that

2~- s t! = -pi<i a+2c<xc! AiL p+pic �3s  II.7Z!

The linearized versions of  II.73! and  II.74! can be found in Hill and

Davis Ll5j for a planar naturally curved tube of constant initial curvature.



II.11 ESTIMATION OF THE MOMENT Mi PER UNIT LENGTH DUE TO INTERNAL FLOW

The derivations of this Section proceed as in Section II.10. We

start by using the Lagrangian coordinate s to identify internal fluid
0

elements, so that the position of the fluid element at time t is
0

s=s . At time t=t, we define the Euler angles g, e and g of the
f f f

0 0

fluid element to be equal to the Euler angles of the riser at s=s; i.e.

g  s,t !=4 s,t !;e  s .t !=e s,t !,4  s,t !=g s,t !  II.75!f f f

At time t, we assume the following compatibility relations of the in-

ternal fluid flow and the riser motion:

g  s,t! = 4 s,t!f  II.76!

 II.77!

 II.78!

where s is given by  II.65!. Relation  II.78! presupposes a non-circular

fluid cross sect~on or more than one circular cross section. For one

circular tube, relation  II.78! is not valid in general but it could be

adopted in order to decrease the degrees of freedom of the system.

fluid element can be determined by

Given that angular velocities are obtained from combinations of first
~f

time derivatives of the Euler angles, the angular velocity, v, of a



+ cQ
f  I I.80.1 !

g = LD + CQ  II.80.2!

 II.80.3!+ cnf

where the dependencies on s , s and t in   II.79! have been omitted for

brevity. Relations   II.80! allow the calculation of the <,   and n

components of the angular fluid element acceleration by:

+ cg> + cg + c 0f r> t g 2
t t s t s

 I!.81.1!

~ ~+ = <' e c~ + co + c Qf +r +w     2
s "t s

  I I. 81. 2!

necks econ+co 2  I I. 81. 3!

It is convenient to eliminate ~, ~ and ~ from  II.81! using  II.54!

to   II.56! and, therefore, obtain:

where s is given by  II.65!. In the derivation of  II.79!, relations

 II.18! to  II.20!,  II.37! to  II.39! and  II.76! to  II.78! have been

used. In component form equation   II.79! gives:





are g1ven by

 II.85!

1,C 1
 II.86!

n
1,C 1

 II.87!

As with equations  II,62! to  II,64! we obtain

 Jnrn J  !�
i,c 1 t

 II.88!

 II.89!dH~ /dt = J.~ '-  J~ -J" !i c i " t i

dH". /dt = J~" '" t  J~~-J~< !
1,C 1 t 1 i

 II.9O!

where relations  II.80! and  II.82! may be used to express the com-

ponents of the time rate of change of the flu1d angular momentum in

terms of ~ and 5.

I1.12 REDUCED FORM OF THE GOVERNING EQUATIONS

Equations  II.74! and  II.83! can be used to eliminate F. and M.1 1

from equations  II.l! and  II.2!. Inspection of equations  II.l!,  II.3!,
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The new term, T, appearing in equations  II.91! and  II.92! is called

effective tension and is a generalization of the term used in

Bernitsas [20,21,33], Nordgren [11] and Patrikalakis [12] to include

the effects of the internal flow.

The components of dHC/dt in the q, 4 and q directions can be ob-
tained by combining equations  II.62! to  II.64!,  II.88! to  II.90!

and  II.95!. Introducing the following definitions:

 II.97!

!Fg + ~ g
R

 II.98}

 II.99!gUR+ gRI
R

and also using  II.80! and  II,82!, we obtain

dH c 2[~q ~C +  ~no gP!~ g] +
dt i s 1 1

+ <r.C q +  >n~ >  }� �v +
t

[~ <�~< + ~R   ~K 'n! +  F00 gled! ~0 6+qK !]  I I.100!

The corresponding expressions in the 4 and q directions can be obtained

cyclically:
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where the effective torsional and bending rigidities are defined by

GIP GIP - c J
e

 II.109!

EIg  EIg  2~ E
e 1

 II.110!

c  II. » 1!

In the derivation of  II.106! to  II.108! the internal cross sectional

area of the riser has been assumed to be constant with s as in

Sections  II.10! and  II.ll!. For compliant risers the differences

between GI and GI, EI~~ and EI~~, and EI" and EI"~ are negligible.

For typical configurations, e.g., de Oliveira and Morton [7], the
2

difference is of order p c /E< l. Similarly the right-hand sides

 ! I .112!w = f s,t,w! + A s!'wt

of equations  II.106! to  II.108! are expected to be small for most

practical circumstances  low frequencies!. These terms are commonly

neglected in the simoler Euler beam theory, see Crandall, et al. [18],

Nordgren [11,13] and Garrett [14]. In the case of compliant risers sub-

jected to rotating and reversing currents, the effects of the first two

terms of the right-hand side of equation   II.106!, which model torsional

inertia, need to be invest~gated.

II.14 GOVERNING EQUATIONS AS A FIRST ORDER SYSTEM OF PARTIAL DIFFERENTIAL
EQUATIONS

It is convenient to convert the governing equations to a first order

system of partial differential equations of the following symbolic form:
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where

w{s,t! = [wl s,t!, w2 s,t!, ..., wN s,t!j  Ir.113!

is the solution vector;

f s,t,w! = [f  s t,w!,f  s,t,w!, ~ ~ ~ f  s,t w! jT  Il.»Z!

a given  nonlinear! vector function of s, t and w; A s! a NxN matrix,

with elements which are functions of s.

It is further convenient to choose

w = [T,Q ,Q ;0 ,Q ,SP;$,8,$;x,y,z;

Ti. so ]   I I. 115!

1. Three force equations   II. 103! to   II. 105!, where

o equations   II. 15! are used to replace c.2, i=1,2,3 in terms
12

of $,9,$;

e equations  II,33! to  II.35! are used to replace the accelera-

tion components m~, a and on in terms of v ,v~,v~ and
~',~< and ";

as our solution vector with N=19 unknown scalar variables. Nineteen

independent equations are needed for a complete formulation of problem,

These equations are enumerated below.
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~ the components of the external force per unit length

are considered functions of s, t, a , a , a , e,g,g,

x,y,z, v~, v~, v", m~, a~, w .,

~ the components of the structural damping force per unit

length 6 are considered functions of s, t and velocity

components.

2. Three moment equations  II.106! to  II.108! where

~ HH, the external moment per unit length around r, is con-

sidered function of s, t, $,8,$, x,y,z, v ,v ,v ,

~ the components of the structural damping moment per unit

length, 5, are considered functions of s, t and the

angular velocity components.

3. Three equations   II.48! to   II. 50! relating the spatial

derivatives of the Euler angles with the Euler angles and

the components of h.

4. Three equations   II.25! to  II.27! relating the spatial

derivatives of the Cartesian coordinates x, y and z with Euler

angles where e is replaced by T/EA .

5. Three compatibility relations   II.45! to   II.47!, where

we replace e by T/EA using equation  II.13!.

6. Three relations  II.54! to   II.56! relating the components of

h,~ and their time and spatial derivatives respectively; and

7. The following equation

T/EA
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resulting by introducing  II.13! in  II.23! to eliminate e. For the

range of strains, e, analyzed in this work, the difference between s*

and s is small, see assumption 3.

Estimates of the static response can be obtained by setting the

components of v and ~ equal to zero in the governing equations, and

replacing the external loads wi th their mean values. These mean

values may, however, strongly depend upon the dynamic response, such

as in the case of vortex induced dynamic lift, see Patrikalakis and

Chryssostomidis [34,35]. The solution vector   II.115! for static

calculations reduces to

 I I.117!
0

with N =13 unknown scalar variables, where subscript o denotes static

quantities. To simp'Iify the notation, subscript o has been omitted in the

superscripts |;,   and n appearing in   II.117!. In the static case the

governing equations symbolically reduce to
  I I.118!

where 7 is a given  nonlinear! vector function of s and w with N =130 0 0

scalar components. This vector function f includes the set of equations
0

1,2,3,4 and 7 defined above for the dynamic problem with the appropriate

reduction of terms to indicate static response.

Efficient numerical solutions of the static problem for compliant

risers can be found in Chryssostomidis and Patrikalakis [36] for a planar
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buoyant riser configuration without torsion. Efficient numerical

solutions of the general static problem in three dimensions with

spacing varying torsion can be found in Patrikalakis and Chryssostomidis

Once the static response is determined, the linear dynamic equa-

tion of compliant risers can be obtained by subtracting the nonlinear

static equations from the nonlinear dynamic equations in their vector

form and linearizing for small dynamic motions and angles around the

static configuration. The derivation of the linear dynamic equations

for compliant risers and their solution using a novel combination of

asymptotic and embedding techniques can be found in Patrikalakis and

Chryssostomidis [38].

The solution of the complete nonlinear dynamic problem for compliant

risers is a subject of current research. The prediction of the external

loads FH and NH is one of the more important factors in a successful

modeling of the static and dynamic behavior of compliant risers. Until

rational methods allow the prediction of these loads in separated flows,

approximate estimates based on strip theory and experimental 2-D flow

models may be used for design purposes, see Patrikalakis [12] and

Patrikalakis and Chryssostomidis [34,35].

II.15 BOUNDARY CONDITIONS

In the case of the static problem N =13 boundary conditions are
0

necessary to complete equation   II.118!. For the case of a Chinese Lantern

configuration, de Oliveira and Norton [7] and de Oliveira, et al. [8], an
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tions can be obtained by evaluating x ,yt,zt at both ends, or by
evaluating v ,v ,v at both ends. These velocity components can be ob-

tained by

[v ,v ,v j = C.[xt,yt,zt]n T T  II.»9!

where the elements of matrix C are given by  II.15!. For the catenary

configuration, the boundary condit~ons at s=L for the dynamic problem
remain unaltered, while the boundary conditions at s=0 need to be modified

to also express the equilibrium of interaction forces and moments, and
kinematic compatibility with the lower rigid riser.

I I.16 INITIAL CONDITIONS

An appropriate set of initial conditions involves the prescription
of Euler angles !,6 and g, their first partial derivatives with respect to

approximate set of boundary conditions for the static problem involves

prescripti on of 4,9,<, x,y and z at s=0 and s=L and s*�!=0. For the

case of a catenary configuration, Panicker and Yancey [6], the above

boundary conditions at s=O need to be modified to also express equilibrium

of interaction forces and moments and kinematic compatibility with the

lower rigid riser section.

For the case of a Chinese Lantern, an appropriate set of boundary

conditions for the dynamic problem involves prescription of 4,8,4,

x,y and z at s=O and s=L as functions of time and s*�,t!=0 for t>Q.

This gives l3 boundary conditions. The remaining six boundary conditions

can be obtained by evaluating the angular velocities at s=0 and s=L

using  II.37! to   II.39! and the prescribed values of $,6,f at each end

as a function of time. Alternatively, the remaining six boundary condi-
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 II.125!x = �+T/EA! cos~

 II.126!y =  l+T/EA! sin<

v~- Pv»= T/EA
s t

 I I.127!

v» + n~v< = �+T/EA!~"
s

 I I.128!

�n s 't  II.129!

 II. l 3O!s* = l+T/EA
s

where

c = SEng  Il.1 31 !

 II.132!c22 = cosf

In the two-dimensional case, we observe that  II.124! and  II.l29! or

  II.39! lead to
 II.l33!

The boundary and initial conditions appropriate for the two-

dimensi onal problem are obtained from Sections   II. l 5! and   II. 16! by

eliminating the variables which are identically zero.
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Appendix A

BENDING, EXTENSIONAL AND TORSIONAL
RIGIDITY OF A CROSS SECTION

Let Us consider an arbitrary cross section of a compliant riser

composed from n materials referred to a Cartesian system OXY, as in

the Figure A-1 below:

"c

0 xc

Figure A. 1: Compliant Riser Cross-section
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The cross section is bounded by an outer contour C and by inner con-
0

tours C.  i=1, ...N!. Let P be an arbitrary point on a material of a
1

cross section fully participating in bending and let E P! the Young's

modulus of the material at point P. Following Crandall, et al. [19],

p. 424, it is convenient to define the "centroid", C, with a weighing

function equal to E P!, i.e.:

f dS E P!Xj y dS E P!  A. 1 !

r dS E P!Y/ J dS E P!  A,2!

S S

 A. 3!x =   cos 4 - q sin 4

 A.4!y =   sin 4 + q cos 4

together with  A.l! and  A.2!, we find that

J E P! g dS = f E P! z dS  A.5!

The bending rigidities of the cross section about x and y and the

cross product of bending rigidi ty are defined by

where X,Y are the coordinates of C and S the surface of the materials

of the cross section participating in bending.

Let us introduce a Cartesian system Cxy with axes Cx and Cy having

the same direction as OX and OY and a system C<q so that the angle be-

tween Cx and CE is 4, Using x = X-X , y = Y-Y andc' c
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EI = I E P!y dS  A. 6!

EI = J E P! dS  A.7!

E P!xyds  A.s!

 A. 3a!x cos C + y sin c

 A.4a!-x sin 4 + y cos

and letting,

! E P! g2dS
S

 A.9!

EI- - J E P!~2dS
S

 A.lo!

EI~~ = y E P!<ndS
S

 A.ll!

we find following Timoshenko and Young [39], p. 354:

!+~ EI -EI ! o 2
2

 A.l2!EI ysin 24

S
Considering an elementary area dS of material with coordinates
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EI = p EI EI ! - p EI -EI ! o 2

 A.13!+ E I�s in 2C

EI = �  EI -EI ! 2 + El o 2e  A.14!

The value of 4 can be chosen so that EI is, for example,

maximum. This requires EI = 0 and EI < 0. These relations give
4 44

tan 24 = ��, sin 2C < 02 EI

EI y-EIxx
 A.15!

If these relations are valid, then EI<" = 0 and EIn>n< > 0 and therefore
EI"" is simultaneously minimum. The value of C determined by  A.15!

leads to

EI<n = 0  A.le!

E I xx E Iyy 2 2EI~  21 EIxx EIyy! , [ EI 2EI !  EI"y! ]  A.17!

EIxx EI» '
1/2

EIDER l  EI +EIyy! L EI -EI ! + EIxy!
2 2

 A.18!

The axes CE and Cz corresponding to this value of 4 are called centroidal

principal axes and because of  A.5! and  A.16! simplify the constitutive

relations for the rod in bending. When  A.15! is valid, we obtain
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The definition of the extensional rigidity of the cross section

EA = Z E P!dS
5 I

 A.19!

where S' is the surface of the material resisting extension.

Finally, the torsional rigidity GI of a cross section can bep

determined by the stress function method, as described, for example,

in Love [9], Landau and Lifshitz [lO] and Timoshenko and Goodier [40].

For complicated sections, approximate expressions for the stress func-

tion can be obtained from an energy method, Timoshenko and Goodier [40].

All above derivations assume that the various materials composing

the cross section are uniform and work perfectly together in the corre-

sponding deformation mode; i.e., that the corresponding deformations

are continuous across surfaces of materials taken into account. When

the materials are not uniform  as for exampIe in the case of steel armor

wires protecting pipes made from synthetic materials!, more complicated

analysis and, often, experiments are necessary, Timoshenko [41],

de Oliveira and Norton [7] and de Oliveira, et al. [8]. Finally, the

above derivations do not account for changes of the rigidities as a func-

tion of the level of deformation.
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Appendix B

DERIVATION OF CON~TUT I V E RELAT IONS
IN THE Ctnb SYSTEM

Let us assume that the centerline of the rod is a continuous

curve composed of the centroids, C, of all cross sections, where C is

defined in Appendix A. The local tangential, normal and binormal

vectors of the centerline at each C can be defined in terms of the

position vector R of C with respect to an inertial system OXYZ. We

choose OXYZ so that OY is vertical and positive upwards. If, for

example, the lower end of the rod is fixed with respect to the earth,

then we may, for convenience, choose 0 to coincide with the centroid

of the lower end cross section of the rod. Otherwise, we may choose 0

to coincide with a particular convenient point fixed with respect to

the earth. Point C can be identified in terms of s* s,t!, the stretched

arc length from 0 or in terms of s the unstretched arc length from 0.

In the subsequent analysis differentiations with respect to s* to de-

termine curvatures and torsion will be replaced by differentiations with

respect to s because the extensional strain e=s*-l is very small compared
s

to one, Love [9j.

Let U be the column triad of unit vectors along OX, OY and OZ:

U = [> j4j

T
+

where [ j denotes transpose. We may than analyze R, the vector OC, as

l 2 3 x,x,x !'U
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The tangential unit vector, 7, to the centerline at C is defined by

s 1 2 3t = R ~ = 1 =   x,a,a !U R

see Eisenhart [26j, where subscript s denotes partial derivative with

respect to s, the unstretched arc length of the centerline from the

i ilower end of the rod, where a = x � for i = 1,2,3. Since t is a unit

vector, we obtain
-+ 1/2

e= R . R! -1
s s

The normal unit vector, n, to the centerline at C is defined by

n = K R = �,B,g !'U

where 8 = K x for i = 1,2,3 and K i s the curvature of the centerl ine
-1 i

at C, defined by

where I I denotes the length of a vector, Eisenhart [26j.

The binormal unit vector, b, to the centerline at C is defined so

that n, b and 7 form a right-handed system:

1 2 3b = txn =  v v,V !'"

where y = K  x x -x x ! and the indices i,j,k take the values l,2,3-1 j k kj

cyclically, Eisenhart [26].
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The rates of change of 7, n and b with respect to s can be shown

to obey the following identities called Frenet relations:

t = Kn
s

n = tb - Kt
s

+
b = -<n

s

where ~ is the geometric torsion, Eisenhart [26], or measure of tortuosity,

Love L9] of the centerline at C. Note that Love [9] uses the symbol 1/Z

instead of ~.

The negative sign is used in equation  8.9} so that the torsion T

is positive when the vector triad X,n,b rotates in a right-handed sense

about 7 as it progresses along the curve, Hildebrand I42]. lt can be shown

that ~ is given by the following equation:

-2
R  R xR !

ss sss

or equivalently

1 2 3
x x x

s

K det
1 2 3
ss ss

 B.10!

x
1 2 3
sss sss sss

X

where det [.] denotes the determinant of a matrix, Eisenhart L26]. From

the definition of ~ it follows that v is zero for a plane curve, Eisenhart [26].
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t =Ox t
s

Us i ng equations   8 . 1 I !,   B . 6 ! and { 8 . 7 ! we fi nd tha t

t x  Qxt! =  t't!Q-{t'Q!t = txt = Ktxn = Kb

and therefore, since

0= Kb+2. t {B. 12!

Let f be the angle between n and q, as in Figure 8.1, Love [9j, and

2] R2 R3 the di recti on cosi nes of b wi th respect to C~g. Us i ng   B . 9 !
we find that

2 2 2 2
k1 + 22 + 23

s s s

 B. 13!

For a fixed time, the change of vector t between two neighboring

points of the center line is d7 = dcxt, where dg is the vector of the

angle of infinitesimal rotation of the system CT<ri at s+ds relative to

the system C~P at s. Therefore, dividing by ds and using equation  II.10!

we find that
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Figure B.1: Coordinate System for a Cross-section

where, of course, JI. = 0, because b.t; = 0 and as in equations  B.1!

to  B. 11 ! subscript s denotes the total derivative with respect to s

for a fixed time t,

Using the decompositi ons of 4~ = I A ,A ,0"] U" and of equation   B. 12!

we find that



with

K2 ~� + p2  B. le!

and

tan f = -0 /G~  B. 17!

see Love [9].

Using the fact that

bs  b ! + gxb  B. laj
CqKii

see Landau and Lifshitz [10] and Crandall, et al. [18], or explicitly

= sinf f � 0 sinf and R = cosf f � Q cosf
2s s 3s s

and substituting in equation  B.13!, we find that:

n~=f +~
s  B, 19!

b = k2 +R3q and noting that the left-hand side of equation  B.18! is

equal to -Pn and the right-hand side is equal to f  sinf +cosfrI!-s

 sinfQ -FlcosfA +q A sinf+G cosf! and multiplying both sides by n.

We are now in a position to express the components of the bending

moment along b and n in terms of its components along g and q by the

relations:

where the convention that t rl and Vnb are right-handed systems is used,

see Love [9]. Alternatively equation  B.19! can be obtained by using
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cos f+N sin f
b

 e,2O!

N =N sin f+M cos f
n

Using  II.ll!,  B.14! and  8.15! we obtain

M = KtEI~~cos f + EI""sin f]2 2  B.ZZ!

= � KtEI~~ - EI~~] sin 2f
2

 8.23 !

El<~ = �  EI " + EI ! -  EI -E7 !cos2f+EI sin2f  8.24!
2

= l  EI" + EI ! + p EI -EI !cos2f-EI sin2f  B.25!
2

EI = > E7 - EI !tan2f  8. 26 !

Using  8.22! and  8.26! we therefore find that

We now express EI and EI "~ in terms of EI, EI and EI usingnn bb nb

the relations  A,12! to  A.l4! and  A.16!, where 4=f-v~/2 and x,y of

Figure A-1 are replaced by n, 6 of Figure 8.1, respectively:
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M -EI K

These equations imply that in rotationally uniform rods, where

nb
A

EI =0, the bending moment is exclusively directed in the local b

direction, Love [9]. The approximation N =0 was, for example, used

in the modelling of conventional risers, Patrikalakis [12], Nordgren

[11,13j and Garrett [14].
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Appendix C

CONSTITUTIVE RELATION BETWEEN
T and e

Introduction

For the case of a cable composed of a homogeneous, isotropic and

linearly elastic material, Goodman and Breslin [28] showed that tension

in the material P and sma'll extensional strain of the centerline are

related by:

P = EAe-2vA Po

where EA is the extensional rigidity of the cable, v Poisson's ratio

and p the water head. For a cable the effective tension is
0

T=P+pA
0 0

and therefore,

T = EA e+�-2v!p A
0 0

Previous investigators, such as Goodman and Breslin [28], Triantafyllou [22],

Triantafyllou and Bliek [23], Bliek [24] and Triantafyllou, et al. [25],

Used a Poisson's ratio v = 1/2 because of the simplification of the constitu-

tive relation and subsequent analysis. The assumption v = 1/2 for a cable

element is equivalent to zero volume expansion, Timoshenko and Goodier [40]

and leads to:

T= EAB
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Values of Poisson's ratio for engineering materials vary from 0.1 for

concrete to 0.5 for rubber. For most metals it is between 0.25 and

0.35, see Harris and Crede [43].

Anal sis for the Case of a Uniform C lindrical Tube

Ne start with a straight unstretched differential element of the

tube, ds, in air bounded by two adjacent cross-sections and with inner

and outer radii equal to r. and r , respectively. The tube is filled
i 0

with a liquid of density p. and an internal overpressure, p, above the
i

atmospheric is applied. Finally the tube is immersed in a liquid of

density p and is subjected to external loads. Under the action of all

loads ds extends to ds*, so that the extensional strain of the centerline

is bit
e=s -1

S

It is assumed that e « l. In addition the centerline of the tube is no

longer straight. In the sequel we perform an approximate analysis to

determine the relation between tension, P, and small extensional strain, e,

assuming that ds* is straight and additionally that:

l. The cross section remains circular under the action of all loads.

This is very accurate if 2r / r -r ! is less than 25 to 30 and the curvature
o o 1

is not very large, von Karman [44].

2. The normal stresses parallel to 7 due to tension are constant

throughout the material cross-section.
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3. The radii r and r. are small compared to the length of the
0 i

tube so that the internal and external hydrostatic pressures are

essentially constant for all points of each cross-section; i.e., the

loading is axisymmetric.

4. Shear stresses are negligible.

5. 8ody  gravity! forces are neglected from the field equations

of elastic stress equilibrium because their global effect is reflected

in the value of the tension.

dv c -d
r r 9

br r

where

U
E.

r
3v

E r ar'

Using a local cylindrical coordinate system  r,6,z! where r is the radius,
6 the polar angle and z the tangential distance, we find that o , a6 and
a are independent of 6 and that we need to satisfy the following equation

z

of equilibrium in the radial direction
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ru +ru-u=02 rr r  C.lO!

which has the fol'towing general solution

u=Ar+� B

r

The boundary conditions are

v = -p. at r=r. and a = -p at r=rr i i r o o  C.ll!

where p, = p + p g  --y! Po =

Equat1ons  C.7!,  C.B! and  C.ll! lead to
2 r2

1 v Pi"1 Po 0
A E

r.

 C.12!

 C.13!

Using  C.7! to  C.9! and  C.12!,  C.13! we find that

2 r2
1 1 0 00 + tie " 2
r -r.

o 1

which is independent of r and because of

and c, e< are the radial and circumferential strains and u the radial

displacement. Using  C.6! to  C.9! and our assumptions we obtain
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the resulting extensional strain c is uniform throughout the cross
z

sectional  i.e., equal to e! and can be estimated from

2 2
a p,r.-p r

z 2v i 1 0 0

r - r,
0 i

where

a = P/A and A=~ r -r.!
2 2

z 0 1

A =i'.r
2

0 0
and A. = air.

2

1 1
we find thatUsing

P=EAe + 2v p.A.-p A !
i 1 0 0

Using the definition of the effective tension T   II.91.2!

 C.19!7= P+ pA-p,A.
0 0 i i

 c.20!
T = EAe + �-2u! po o-

which is the required constitutive relation between T and e.

where the term o.c A,. has been neglected because p.c «p, we obtain2 2
i i i
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For the reasons given in the Introduction, we will adopt the value

v = 1/2, which leads to

 C.21!T = EAe

hie will continue to use  C.21! for multilayer tubes and multitube con-

figurations where EA is taken equal to the overall extensional rigidity

of the riser.


